Зависимость давления от скорости потока жидкости

Введение

Транспортировка жидкостей всег­да занимала существенное место в человеческой деятельности. Вода нужна, например, для приготовле­ния пищи и орошения. Даже сегодня наше общество не может существо­вать без многих способов подачи воды, с которыми мы сталкиваемся на каждом шагу.

Первым средством, применявшимся для доставки воды по назначению, была лохань или ведро.

Чтобы под­нять воду со дна колодца, применя­лись веревка и примитивный ворот. Сегодня наиболее распространен­ным средством доставки жидкостей являются насосы с электрическим приводом. Для различных целей применяется множество различных типов подобных насосов. В частно­сти, стали очень распространены центробежные насосы благодаря та­ким своим преимуществам как:

  • высокая надежность
  • простота конструкции
  • низкая стоимость
  • универсальное применение

https://www.youtube.com/watch?v=ytcopyrightru

В этом пособии мы хотим дать чита­телю рекомендации по правильному выбору насоса для решения кон­кретной задачи и объяснить ему фи­зические законы, действующие при работе центробежного насоса.

Физические условия

Чтобы выбрать оптимальный насос для решения конкретных задач, не­обходимо учитывать следующие фи­зические условия.

1. Характеристики жидкости

  • плотность (“тяжесть” жидкости)
  • давление  насыщенных  паров (температура кипения)
  • температура
  • вязкость (“густоту” жидкости)

2. Объем, который необходимо по­дать (расход)
3. Высота всасывания:разница в уровне между насосом и точкой забора жидкости
4. Высота нагнетания: разница в уровне между насосом и наивысшей точкой, в которую пода­ется жидкость
5. Потери давления на всасывании (потери на трение)
6. Потери давления в напорном тру­бопроводе (потери на трение)
7.

Характеристики жидкости

Для выбора оптимального насоса необходимо иметь полную инфор­мацию о характеристиках той жид­кости, которая должна подаваться потребителю.

Естественно, что “более тяжелая” жидкость потребует больше затрат энергии при перекачивании данного объема. Чтобы описать, насколько одна жидкость “тяжелее” другой, ис­пользуется такое понятие, как “плот­ность” или “удельный вес”;

).

Любая жидкость при определенных температуре и давлении стремится испариться (температура или точка начала кипения); повышение давле­ния вызывает повышение температуры и наоборот. Таким образом, при более низком давлении (даже воз­можно при вакууме), которое может иметь место со стороны всасывания насоса, жидкость будет иметь более низкую температуру кипения.

Если она близка или в особенности ниже текущей температуры жидкости, воз­можно образование пара и возник­новение кавитации в насосе, что в свою очередь может иметь отрица­тельные последствия для его харак­теристик и способно вызвать серьез­ные повреждения (смотрите главу о кавитации).

Вязкость жидкости вызывает потери на трение в трубах.

Численное значе­ние этих потерь можно получить у из­готовителя конкретного насоса.

Необходимо учитывать, что вязкость “густых” жидкостей, таких как масло, с ростом температуры падает.

Расход воды

Он определяется как объем, кото­рый должен быть подан за указанное время, и обозначается как “Q”. При­меняемые единицы измерения: как правило, это литры в минуту (л/мин) для насосов небольшой мощности/ производительности, кубометры в час (м

/ч) для насосов средней про­изводительности и, наконец, кубоме­тры в секунду (м

/с) для самых мощ­ных насосов.

Связь между напором и давлением

Она определяется как разница в гео­дезическом уровне между впускным патрубком насоса и свободной по­верхностью жидкости в наиболее низ­ко расположенном резервуаре, изме­ряется в метрах (м) (рис. 3, поз. 1).

https://www.youtube.com/watch?v=ytcreatorsru

Она определяется как разница в гео­дезическом уровне между выпуск­ным патрубком и наивысшей точкой гидросистемы, в которую необходи­мо подать жидкость (рис. 3, поз. 2).

Это потери на трение между жидкос­тью и стенками трубопровода и за­висят от вязкости жидкости, качества шероховатости поверхности стенок трубопровода и скорости потока жидкости. При увеличении скорости потока в 2 раза потери давления воз­растают во второй степени (рис. 4, поз. 1).

Информацию о потерях давления в трубопроводе, коленах, фитингах и т.п.

Как можно видеть из рис. 6, столб воды высотой 10 м оказывает такое же давление, что и столб ртути (Hg) высотой 0,7335 м. Умножив высоту столба (напор) на плотность жидко­сти и ускорение свободного падения (g), получим давление в ньютонах на квадратный метр (Н/м

) или в паска­лях (Па). Поскольку это очень незна­чительная величина, в практику экс­плуатации насосов ввели единицу измерения, равную 100000 Па, наз­ванную баром.

Таким образом, высоту столба жид­костей с различной вязкостью можно привести к эквивалентной высоте во­дяного столба. На рис. 7 приводятся коэффициенты преобразования для множества различных единиц изме­рения давления.

Ниже показан пример расчета общего гидравлического напора со схемой установки насоса.

Гидравлическая мощность (P

Уменьшение проходного сечения дроссельного клапана в гидроси­стеме вызывает повышение потерь давления (гидродинамического на­пора H

), делая кривую характери­стики гидросистемы более крутой, в результате чего рабочая точка сме­щается в направлении более низкой подачи (смотрите рис. 25).

В результате снижается потребляе­мая мощность, поскольку центробеж­ные насосы имеют характеристику мощности, которая уменьшается при уменьшении подачи.

Пример

Объем в 35 м

воды за час должен быть перекачан из колодца глубиной 4 м в бак, размещенный на высоте 16 м относительно уровня установки насоса; конечное давление в баке должно быть 2 бара. Потери напора на трение во всасывающем трубопро­воде принимаются равными 0,4 м, а в напорном трубопроводе составляют 1,3 м включая потери в коленах.

Плотность воды предположительно составляет 1000 кг/м

и значение уско­рения свободного падения 9,81 м/с

* В данном примере конечное из­быточное давление дано как абсо­лютное давление, т.е. как давление, измеренное относительно абсолют­ного вакуума.
** Если конечное избыточное давле­ние дано как абсолютное, то началь­ное избыточное давление необходи­мо вычесть, поскольку это давление “помогает” насосу всасывать жид­кость.

Вода через всасывающий патрубок насоса попадает на вход рабочего колеса и под действием вращаю­щихся лопаток испытывает положи­тельное ускорение. В диффузоре кинетическая энергия потока преоб­разуется в потенциальную энергию давления. В многоступенчатых насо­сах поперечное сечение диффузора со встроенными неподвижными ло­патками называют “направляющим аппаратом”.

https://www.youtube.com/watch?v=playlist

Из схемы на рис. 10 видно, что потенциальная энергия в виде давле­ния в насосе растет в направлении от всасывающего к напорному па­трубку, поскольку гидродинамиче­ское давление, создаваемое рабо­чим колесом (кинетическая энергия скорости потока), преобразуется в потенциальную энергию давления в диффузоре.

Рабочие характеристики насоса

На рис. 11 представлена типичная эксплуатационная характеристика центробежного насоса “Q/H”.

Из нее видно, что максимальное дав­ление нагнетания достигается, когда подача насоса равна нулю, т.е. когда напорный патрубок насоса закрыт. Как только поток в насосе возраста­ет (увеличивается объем перекачи­ваемой жидкости), высота нагнета­ния падает.

Точная характеристика зависимости подачи Q от напора H определяет­ся изготовителем опытным путем на испытательном стенде. Например (рис. 11), при напоре H

насос бу­дет подавать объем Q

и аналогично при H

Рабочая точка – это точка пересече­ния графика характеристики насоса с графиком характеристики гидроси­стемы. Понятно, что любые изменения в гидросистеме, например измене­ние проходного сечения клапана при его открытии или образование отложений в трубопроводе, сказы­ваются на характеристики гидроси­стемы, в результате чего положение рабочей точки изменяется.

Эксплуатационная характеристика насоса

Как уже было показано выше, поте­ри напора на трение в трубопроводе зависят от качества шероховатости поверхности стенок трубопровода, и квадрата скорости потока жидкости и, конечно же, от протяженности тру­бопровода. Потери давления на трение можно представить на графике “H/Q” как кри­вую характеристики гидросистемы.

Потери давления [Па/м] при температуре t = 60°C. Рекомендуемые потери в трубах – не более 150 Па/м.

Параллельно включенные насосы.

https://www.youtube.com/watch?v=ytdevru

Многоступенчатые насосы можно рассматривать как пример последо­вательно включенных одноступенча­тых насосов. Конечно, в этом случае невозможно разобщить отдельные ступени, что иногда бывает желатель­но при проверке состояния насоса.

Поскольку неработающий насос соз­дает существенное сопротивление, не­обходимо предусмотреть байпасную линию и обратный клапан (рис. 14).

Такая схема монтажа используется с целью обеспечения контроля со­стояния насосов или для обеспече­ния эксплуатационной безопасности, когда требуется наличие вспомога­тельного или резервного оборудо­вания (например, сдвоенные насо­сы в отопительной системе). В этом случае также необходимо устанавли­вать обратные клапаны для каждого из насосов, чтобы предотвратить об­разование противотока через один из неработающих насосов.

Типовые закономерности

Согласно этой закономерности, удво­ение диаметра повысит потребляе­мую мощность в 32 раза.

Согласно этой закономерности, удво­ение частоты вращения в 8 раз повы­сит потребляемую мощность.

Потребляемаямощность

: Мощность, потребляемая электро­двигателем из электросети.

У электродвигателей, непосредствен­но присоединенных к валу насосов, как это имеет место в приводе цир­куляционных насосов, максимальное значение потребляемой мощности ука­зывается на фирменной табличке с тех­ническими данными.

P

(3-фазные электродвигатели)

(1-фазные электродвигатели)

где:

V = напряжение (В)
I = сила тока (A)
cos ϕ = коэффициент мощности (-)

: мощность на валу электродвигателя.

В случае, когда электродвигатель и на­сос являются отдельными узлами (вклю­чая стандартные и погружные электро­двигатели), на фирменной табличке указывается максимальная мощность на валу электродвигателя.

: Мощность, потребляемая насосом

Текущая нагрузка электродвигателя может быть определена по кривой мощ­ности насоса. В случае непосредствен­ного присоединения электродвигателя к валу насосов: P

https://www.youtube.com/watch?v=ytadvertiseru

: Мощность насоса (P

hydraulic

Понравилась статья? Поделиться с друзьями:
Мир Медицины